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Pulse Distortion on Multilayer Coupled
Microstrip Lines

JAMES P. GILB, STUDENT MEMBER, IEEE, AND CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract —The distortion of pulses due to dispersion and coupling on
generalized planar microstrip is investigated. A simple, general form for
the Green’s function is obtained by solving the boundary value problem
separately for the TE* and TM” modes. The mechanism of even/odd-
mode distortion is discussed and numerical results are presented illustrat-
ing its effect. The design of structures with low even/odd-mode distortion
is considered. Results for pulse distortion on this type of microstrip are
also included.

I. INTRODUCTION

LTRAFAST switching speeds and decreasing circuit
dimensions of MMIC’s emphasize the dispersive na-
ture of these printed circuit transmission lines. This in-
crease in dispersive behavior can result in significant dis-
tortion on signals that travel only a short distance in an
MMIC line. Signal distortion and the close proximity of
additional transmission lines necessitate an accurate time-
domain analysis of coupling between these lines. The dis-
tortion of nonperiodic signals on single microstrip lines
has been investigated using approximate formulas for the
line parameters [1]-]4], and experimental results have been
published as well [4], [5]. Similar calculations have also
been performed using approximate formulas to include the
effects of attenuation distortion and a full-wave analysis to
determine the effective dielectric constant [6], [7]. In addi-
tion, distortion effects on coplanar waveguides have been
investigated [8]-[10], since their two-conductor structure
makes the analysis almost the same as the single mi-
crostrip. Distortion of signals on multiple strips has also
been examined using an impedance matrix approach with
the matrix values determined from approximate formulas
[11], [12]. However, a full-wave analysis of pulse distortion
on multiple microstrip lines including the response on
adjacent lines has not been investigated.
This paper uses a frequency-domain approach to ana-
lyze the time-domain response of a nonperiodic input in a
multiconductor, multilayer microstrip structure. First the
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frequency-dependent propagation constants are found for
the structure using a modified spectral-domain technique.
These values are then used with the Fourier transform of
the pulse to determine the frequency-domain output. This
output is inverse Fourier-transformed to give the modal
time-domain waveform. Finally, the modal waveforms are
superimposed, giving the total response at a certain dis-
tance or time on all the conductors.

The propagation constants are found using a variation
of the spectral-domain approach that is simple to formu-
late, computationally efficient, and easy to expand to
examine very general structures. The derivation uses TE”
(LSE) and TM” (LSM) modal configurations to expand
the electric and magnetic fields. These configurations make
the derivation much easier because the boundary value
problem can be solved for each mode independently,
streamlining the derivation and reducing the chance for
errors. The resulting Green’s function is purely real for
lossless structures, thus reducing computer storage require-
ments and run times. Finally, the derivation can be applied
to a very general geometry that includes all of the follow-
ing:

a) an unlimited number of signal conductors confined
to one plane;

b) an unlimited number of dielectric layers above and
below the interface containing the conductors;

c) top (cover) and/or bottom (ground plane) conduc-
tor (either present or absent);

d) conductor sidewalls (either present or absent).

Results are presented showing that differences in the
even- and odd-mode propagation constants can produce
significant degradation of the pulse before it experiences
degradation due to the dispersive nature of the structure.
Graphs showing the effects of strip spacing on the shape of
the signal pulse as well as the response on the sense line
are included. It is also shown that the introduction of a
substrate layer with a much lower dielectric constant and
the proper height can cause the even- and odd-mode
propagation constants to be equal, eliminating interference
between the lines.
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Fig. 1. Geometry of general planar coupled microstrip structure.

II. DISPERSION RELATIONS

Throughout the paper an e’/' time convention is used
along with a two-dimensional spatial Fourier transform
pair defined as

F{g(x,y,2)} =G(B., ».B.)

=/°° /°° g(x, y, 2)e/ BB dudz (1)

—oQ" — 00

FH{G(B.. y.B,)}
= g(x, Vs z) )

1 0 oo
= ey L G By B P00 dpdp, ()

where B7+ B2 —a2=p%=w’ue, and B, B,, and a, are
the wavenumbers in the x, z, and y directions. All Fourier
transform quantities are denoted by a ( ~ ). The geometry
used in the derivation of the Green’s function for an
arbitrary planar microstrip structure is shown in Fig. 1.
The structure is surrounded on four sides by perfect elec-
tric conductors at x=+4a, y=0, and y=h, +h;,
+ .-+ +hy, +hy If an open structure is to be consid-
ered, then a — oo and h, — c0. For a covered microstrip
without sidewalls, then a —co with h,; remaining finite.

The propagation constant S8,(w) can be determined in
many ways. However for coupled microstrips, the spectral-
domain approach is simple to formulate and apply, and it
can be easily extended to many different structures. This
paper uses a variation of the spectral-domain approach to
derive the Green’s function of the microstrip. This varia-
tion is computationally efficient because the Green’s func-
tion is expressed as a real function over the entire range of
integration. In addition, the formulation shows that the
boundary conditions can be enforced on the TE” and TM”
modes independently. This allows the total boundary value
problem to be split into two smaller, similar problems,
greatly reducing the complexity of the derivation.
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In order to show that a TE or a TM mode can be used
independently to solve the boundary value problem, it is
necessary to demonstrate that the tangential field compo-
nents satisfy all the boundary conditions over a closed
surface, with no conflicting conditions. This condition is
valid for the TE” and TM” modes, in contrast to the TE?
and TM? modes, if certain conditions on the modal cur-
rent densities are met [13]. In particular, the x and :z
modal current densities must be related by

sz;TE = Bx‘j:cTE (33)
BJ™ =B, J™. (3b)

The first equation is derived by using the continuity equa-
tion in the transform domain and the second by using the
magnetic wave equation in the transform domain [13]. In
addition, the modal currents are related to the total current
density on the microstrip by

jz'=J:TM+J;TE

Jo=Jmy jTE

(4a)
(4b)

Thus, the modal current densities can be expressed in
terms of the total current densities using (3a) and (3b) as
v BALB+IB.)

(52)

: (82+8)
. B(LB.~7B.)
TR )

Using these current densities, the total fields at the
dielectric interface containing the center conductors can be
written as

E = L[‘]:G’.zz—i- j:c ~xz]

z

(6a)

(13 0
Bo=L[i¢. +ic.] (6b)
X w€0 ZVZX XXX
where éxx, ézx, and ézz are the dyadic Green’s functions

for the particular geometry being considered and are de-
fined as

. ZZNTM__ 2 ZFZTE
— Bz BxBO‘ (7a)

Y
BIZ™ ~ BIBSZ™
XX = BZ + ,32 (7b)
. N ZTM + BOZZTE
ze = sz = Bsz—72 + ,82 (70)

and Z™ and Z™ are the modal Green’s impedance
functions for the particular geometry being examined. A
general recurrence relation to determine Z™F and Z™ for
any arbitrary planar structure is presented in Section IIL
Equations (6a) and (6b) can then be solved for B8, via
Galerkin’s method as in [14].
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III. GREEN’Ss FUNCTION

While the Green’s function for any arbitrary planar
microstrip geometry can be derived using Maxwell’s equa-
tions and enforcing the boundary conditions at the inter-
faces, the derivation becomes complex and tedious as more
dielectric layers are considered. However there is a definite
form that the Green’s function takes as more planar dielec-
tric layers are added. This form becomes apparent as the
boundary value problem is solved for more than two
dielectric layers above or below the conductor interface.
The impedance elements of the Green’s function, Z™ and
ZTE can be written as a parallel combination of the
admittances seen above and below the conductor inter-
face; i.e,

70—

(8)

where i is either TE or TM; L and U indicate the lower
and upper layers respectively; and N and M are the total
numbers of planar layers below and above the interface, as
in Fig. 1.

The admittances );((j’)) can be found using a recursive
formulation for either the upper or the lower layer, begin-
ning with j= L1 or U1 through j= LN or UM, using

T+ TS

v TM+y7 TM 2 2
Y Yoo+ &0)/Br )

Y~TM — 4 _ (93)
) ™ ™
Yooy Y,
& TE v TE 2 2
PrE_ Y Yo-v <)/ %0 (9b)
(. yTE L YTE
sin T Y=

JTE _ a,yeoth[a, k)]
s()
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Brip

Fo— e,pooth[ah]
s(y :

(9d)

R0

}7((1’)) can be thought of as the admittance seen looking
outward from the jth layer (away from the conductor
interface), and Y,{") is the self-admittance of the layer for
the particular mode configuration.

For j=U1 or L1, then the (j —1)th layer, UQ or L0, is
a perfect electric conductor (i.e., a ground plane or cover
sheet), and Y{),— oo, for k=U or L, since a perfect
conductor has zero resistance. Taking the limit of either
(12a) or (12b) as ¥}, goes to infinity leads to Y= VA7

If the (k)1th layer is dielectric of infinite height (i.e., a
structure with no ground plane or cover sheet), then
h gy =0 and coth(at, /(1) 1. The conditions for
Y{) and Y§); are the same as above, as though there were
a conductor at an infinite distance. This is a valid assump-
tion since the outward radiation condition specifies that
E — 0 as y — + oo. This particular configuration, with no

ground plane and/or cover sheet, results in
STE _ VTE
Yion=Youn= %y ey1/ Brgion (10a)

Y(P)\;I = Ys(T/E/)ﬁ = €01/ iy k=Uor L. (10b)
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Note that these equations are the same for layers above
and below the conductor interface because Maxwell’s
equations are invariant with respect to chojce of coordi-
nates. This is valid only for strips of vanishingly small
thickness and becomes invalid when the strip thickness
approaches the height of the dielectric layer that con-
tains it.

IV. PULSE DISPERSION

The voltage or electric field on the microstrip at any
position z and time ¢, can be represented as

1 ,e0 .
U(tO’Z)=E_[_ V(w, z=0)e/l“0" B2 44 (11)

where

P(w,z=0) =/_°Ooov(t,z=0)e“f“”dt (12)

where (¢, z=0) and V(w, z=0) are a Fourier transform
pair and B,(w) is the frequency-dependent z-directed
propagation constant. In the case of a finite time-domain
signal, the limits of the second integration are modified to
include only the time that the pulse exists. This integration
can often be done explicitly since many of the signals of
interest have transforms that can be expressed in closed
form. ‘

Since the microstrip is a linear device with respect to
time, the principle of superposition can be applied to the
input signal so that it can be split into two simpler
problems. For symmetric strips, the input signal is split
into even- and odd-mode configurations. For the even
mode, two in-phase signals whose amplitudes are one half
of the original signal are propagated in both strips. This is
equivalent to having a magnetic wall between the two
strips. The odd mode has two signals of one half ampli-
tude, but these signals are 180° out of phase. This is
equivalent to having an electric wall separating the two
strips. The effective dielectric constant for each of these
modes can be easily calculated using the spectral-domain
approach as outlined in Section II.

Having determined the time-dependent response of sym-
metric strips for each of the two modes, even and odd, the
response to a single signal in line 1 and no excitation for
line 2 is

vy(t,2) = [Ue(to’z)“‘vo(fofz)] (13a)

N =

oalt:2) = 3 [0(t00 )~ 0,00 2)]  (13b)

where v,(t,, z) and v,(t,, z) are the even- and odd-mode
responses of line 1 to the input signal. Also v(¢,, z) and
vy(%y, z) are the voltages on lines 1 and 2 at time ¢, and
position z. Using (11), the even- and odd-mode responses
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can be written as

1 . .
(19, 2) =Ef°° P(w, 2= 0)e/olo=/5E doy (14a)
— o0

1 ~ .
v,(t9,2) = E/w V(w,z=0)e/l0=2/%frnldy (14b)
— o0

where €,, and €,, are the frequency-dependent effective
dielectric constants for the even and odd modes, respec-
tively, and c is the speed of light in free space. Substituting
these two equations back into (13a) and (13b) and simpli-

fying we can write

1 0 .
Ul-—-gf_wVCOS wz—z—

+
o~ %gl} do  (15a)

-exp{jw

: oo
c 2 }

1 0
02=Ef_ jVsin{w—

-exp{jw[to—%@l} deo. (15b)

Since only the real part of the signal is of interest, the
integrations can be written more simply as

1 . z
— Vecos{ w—
C

V. RESULTS

On lossless coupled microstrip lines, there are two mech-
anisms that degrade the signal: dispersion and coupling.
Dispersion is due to the frequency-dependent behavior of
€, causing the different frequency components of the
pulse to travel at different speeds. Coupling, on the other
hand, arises from a difference in the even- and odd-mode
€,.¢- Both dispersion and coupling reduce the amplitude of
the signal and spread it out in time. In addition, coupling
has another important effect on signal transmission; it
creates responses on adjacent lines.

Coupling distortion can best be understood by consider-
ing the response on both lines to be a linear combination
of four pulses, two on each line, as in Fig. 2(a). In general,
the in-phase pair (even) and the out-of-phase pair (odd)
will travel down the line at two different speeds, due to
differences in the ¢, of the even and odd modes. The
even- and odd-mode pairs of pulses add constructively on
the signal line, and destructively on the sense line. To
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Fig. 2. Even/odd-mode disortion on a nondispersive, lossless transmis-
sion line. (a) Split into even and odd modes. (b) Distortion after a short
distance. (¢) Increasing distortion with distance. (d) Even and odd
separate completely.

isolate the effects of even/odd-mode distortion, a hypo-
thetical lossless and dispersionless two-conductor trans-
mission line is considered. A rectangular pulse is used for
simplicity, and it is assumed that the odd-mode €, is
higher than the even mode. When the signal first starts out,
the even and odd pairs have not separated very much, and
almost completely cancel each other on the sense line and
reproduce the signal fairly accurately on the signal line, as
shown in Fig. 2(b). As the signal travels farther (Fig. 2(c)),
the even and odd pairs begin to separate. Now they do not
cancel completely on the sense line or reproduce the signal
very well on the signal line, the result being distortion and

“cross talk. After the signal travels a very great distance

(Fig. 2(d)) the even- and odd-mode pairs separate com-
pletely. In Fig. 2(b)—(d), the leading response on the sense
line is positive, because it was assumed that the even-mode
€, Was less than the odd mode; if this is not the case,
then the leading response is negative. In addition, as the
distance increases, the amplitude of the response on both
lines will tend to approach one half the value of the
response on a single, isolated line. The total pulse spread,
in time, due to even/odd distortion, at a distance z,, can
be written as

(=2 e = ] (17)

where ¢,, and ¢,, are the ¢, for the even and the odd
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Fig. 3. Effective dielectric constants of a coupled microstrip and a

single isolated microstrip (w = 2=1.5 mm, s = 3.0 mm, ¢, = 9.7).

mode,  respectively. If the transmission line is dispersive,
then the even/odd distortion mechanism is the same,
except that the even- and odd-mode pairs suffer dispersion
as they travel down the line, adding additional pulse
spread and further reducing the amplitude of the signal.
To illustrate these two mechanisms, Gaussian pulses are
used, whose time and frequency responses are defined as

~ T
v(1) =Ae71n(2)(t/7')2(_)V(w) = Ar lln(z) e~ @/ /@)

(18)

Here A4 is the amplitude of the pulse, 7 is the half
maximum, half width time, and the pulse is centered about
t = 0. For the computation of ¢,., a 2 by 2 matrix is used
(M =N=1) with the J from [14] and J, from [15].
Results obtained with this method have been compared
and agree very closely with results presented in the litera-
ture [14], [16].

Fig. 3 shows €, as a function of frequency for a
single-layer symmetric coupled microstrip, whose dimen-
sions are given in the figure. The change in €,.; versus
frequency is responsible for dispersion distortion while the
differences in ¢,, and ¢,, at a given frequency are responsi-
ble for coupling distortion. At higher frequencies, €,, and
€,, approach the same limiting value, €,; hence coupling
distortion is less significant at these frequencies. The lines
have greater isolation at the higher frequencies because the
electrical distance between the lines becomes greater as the
frequency increases. The largest differences between e,,
and ¢,, appear at low frequencies for this structure. Thus
while a low-frequency-content pulse (i.e., long time dura-
tion and /or long rise times) would experience little disper-
sion distortion, due to the relatively constant e, at low
frequencies, it would still be very susceptible to coupling
dispersion, due to the large difference in ¢,, and ¢,, at the
lower frequencies. ;

In order to illustrate the effects of dispersion and cou-
pling distortion in the structure detailed in Fig. 3, a
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Fig. 4. Gaussian pulse distortion on a coupled microstrip and single
isolated microstrip for (a) /=40 mm and (b) /=80 mm (7 =50 ps,
A=5 w=h=15mm, s=3.0mm, ¢ =97).

Gaussian pulse (4 =15, =50 ps) is assumed to enter the
signal line, with no signal on the sense line. The response
on both lines is plotted as a function of time in Figs. 4 and
5 at four different distances. For comparison, the response
on a single isolated line on the same structure and an
undistorted pulse are included. The undistorted pulse is
computed using a constant e, . equal to its zero-frequency
value for the single line. The difference between the pulses
in the single and in the undistorted lines shows the effect
of dispersion. The difference between the pulses in the
single and the signal lines illustrates how coupling affects
the transmitted pulse. In addition, the amount of cross talk
is represented by the response on the sense line.

After the signal has traveled only a short distance, the
even/odd-mode distortion begins to significantly affect
the pulse. At 80 mm dispersion has reduced the pulse
amplitude by only 4 percent, while even/odd distortion
accounts for an extra 14 percent reduction. The response
on the sense line has risen to almost 40 percent of the
undistorted pulse height. By 160 mm, dispersion accounts
for a 12 percent reduction while even/odd distortion ac-
counts for an extra 30 percent, reducing the signal ampli-
tude to almost half the original value. The response on the
sense line has risen to 56 percent, achieving almost the
same amplitude as the signal line response. At this dis-
tance, distortion due to dispersion is still not a major
factor, while even/odd-mode distortion has critically de-
graded the pulse and induced a false signal on the sense
line. Thus even/odd-mode distortion is the dominant
mechanism for this structure.
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Fig. 5. Gaussian pulse distortion on a coupled microstrip and single

isolated microstrip for (a) /=120 mm and (b) /=160 mm (r =50 ps,
A=5, w=h=15mm, s=3.0mm, e, =97).

The strip spacing, s, is an important parameter in cou-
pled microstrip design. In order to reduce the effects of
even/odd-mode distortion, the strip spacing is increased;
however, to reduce circuit dimensions, the spacing should
be as small as possible. It is important then to be able to
choose an appropriate spacing which is as small as possible
and yet does not have an unacceptable amount of
even/odd-mode distortion. There are three main consider-
ations in assessing the effect of even/odd-mode distortion
on pulse dispersion:

a) the reduction of amplitude in the signal line pulse;

b) the amplitude of the unwanted response in the sense
line; ‘

c) the amount of pulse spread in time.

The acceptable values of these parameters are determined
by the specific circuit in question and are dependent on
the type of pulse and the line length, as well as the physical
parameters of the structure.

A complex structure is used to illustrate both the use of
the recursive Green’s function formulation and the effect
of strip spacing on pulse distortion. The structure is an
open microstrip with three dielectric layers below the
center conductor, one cover layer, aud open air above it,
with dimensions and parameters as given in Fig. 6. The
signal line response, plotted in Fig. 6(a), shows that at a
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Fig. 6. Distortion of a Gaussian pulse on a multilayer coupled mi-
crostrip for different spacings (/=100 mrm, 7=150 ps, A=5, w=1.5
mm hgy =00, hy, =015 mm, h; ;=02 mm, h;, =1.3 mm, h;; =0.5
mm, €,.,; =10, €,,, =3.5, ¢,;3=5.5, ¢,;, =122, ¢,;; = 9.7). (a) Signal
line response. (b) Sense line response.

spacing of about 5 mm, the effects of even/odd-mode
distortion become secondary to dispersion distortion. In
Fig. 6(b), the response on the sense line is detailed. Note
that the positive peak of the response reaches a maximum
amplitude at s = 2.5 mm, reducing slightly for s =1.5 mm.
This is because the amplitudes of the positive and negative
peaks tend to approach a value that is one half the single
line response as the even and odd modes begin to separate,
as shown in Fig 2. ;

In this structure, e,, is less than ¢,, and so the leading
response on the sense line is negative. For single-layer,
open microstrip structures (Fig. 1, N=1 and M =1), the
odd mode always has a lower €,. For multiple-layer
structures, however, it is possible for the even mode to
have a lower ¢, .. An example of this kind of structure is
an open microstrip with two dielectric layers below the
center conductor interface (Fig. 1, N=2 and M =1),
where €, is sufficiently less than e,;,. Fig. 7(a) shows
how the ¢, and «,,, as well as the ¢, of a single isolated
microstrip, vary as a function of the heights of the two
substrates for a given total substrate height, operating
frequency, and parameters as shown in Fig. 7. When the
height ratio, A, /h .., is equal to either 0 or 1 (only e, , or
€,;, below), €, is lower than e,,, which is expected since
these configurations are simply a single-layer microstrip.
However, when the height ratio is between about 0.3 and
0.85, ¢,, is lower than ¢,,. At two different height ratios ¢,,
is equal to €,,; therefore there is no even/odd-mode distor-
tion at this frequency for those two configurations. '
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Fig. 7. Even/odd-mode behavior for two-layer open microstrip (/1
=w=15 mm, s =30 mm, ¢,,,=97, ¢, =22). (a) Effective dielec-
tric constants versus height ratio of dielectric substrates, f =10 GHz.
(b) Location of zero even/odd-mode distortion points versus fre-
quency.

These zero dispersion points can be used to specify
structural parameters where the lines are completely un-
coupled, despite their close spatial proximity. The loca-
tions of the zero dispersion points, or roots, are plotted as
a function of frequency in Fig. 7(b) for the structure
shown. The total substrate height and dielectric constant
of the top layer are the same as the structure used for Figs.
3-5. At frequencies higher than those shown in Fig. 7(b),
the roots are not included because €,, and e,, are approxi-
mately the same for all height ratios, making all of them
zero dispersion points.

Since the structure in Figs. 3-5 is limited by its
even /odd-mode distortion, it is advantageous to see if it is
possible to remove this distortion by adding a second
dielectric layer of appropriate height below. The original
total substrate height is retained, as well as the upper
substrate (e,;, = 9.7); however a lower substrate with €,;;
= 2.2 is introduced. Since the Gaussian pulse used in the
first case is of such short duration, its frequency spectrum
contains significant components at frequencies where the
zero distortion roots are varying widely. Thus it is not
possible to obtain a configuration where there is no
even/odd distortion for all the frequencies of interest.
However, since the spectrum of the pulse falls off quadrat-
ically and since ¢,, and €,, approach the same values at
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Fig. 8. Effective dielectric constants for coupled and single isolated
microstrips on a low-distortion structure (w=1.5 mm, s =3.0 mm,
hp, =097 mm, i, =0.53 mm, €,=97, ¢, =22).
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Fig. 9. Gaussian pulse distortion on a coupled microstrip for (a) /=
40 mm and (b) /=80 mm (7 =50 ps, A=15, w=1.5 mm, s = 3.0 mm,
h; =097 mm, h;; =053 mm, ¢,, =97, ¢,; =2.2).

higher frequencies, it is more important to match the zero
dispersion points for the lower part of the frequency
spectrum. Thus a height ratio of 0.35 is chosen and the
frequency characteristics of the three effective dielectric
constants are plotted in Fig, 8.

While ¢,, and ¢,, are not exactly equal for all frequen-
cies, at lower frequencies ( <20 GHz) they differ by less
than 0.9 percent. In addition, at two frequencies, 1.5 GHz
and 11 GHz, ¢,, and ¢,, are equal. Note that the largest
difference between €,, and ¢,, for this structure does not
occur at zero frequency, but instead happens at 23 GHz,
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Fig. 10. Gaussian pulse distortion on a coupled microstrip for (a)
[=120 mm and (b) /=160 mm (7 =50 ps, A=5, w=1.5 mm, s =3.0
mm, h;,=0.97 mm, h;, =0.53 mm, €,, =97, ¢,, =2.2).

where they differ by 1.4 percent. At very high frequencies,
the two ¢, ¢p, are almost equal, with less than a tenth of a
percent difference.

Using these data for ¢,, and ,,, the pulse responses for
this structure, at the same distances used in Figs. 4 and 5,
are shown in Figs. 9 and 10. The response for the single
line is not shown, because there was no visible difference
between it and the signal line response. In fact, at /=
160 mm, the single and signal line pulses agree to better
than 1 percent, showing that even/odd distortion has been
almost completely eliminated. In addition, the response on
the sense line has been reduced from 56 percent of the
undistorted pulse in Fig. 5(b) to 3.2 percent in Fig. 10(b).
An added benefit is that dispersion distortion has also
been reduced. This is because lower dielectric constants
produce less dispersion for the same substrate height.

VI. CONCLUSIONS

This paper used a variation of the spectral-domain tech-
nique to derive a recursive formulation of the Green’s
function that can handle any planar geometry. The mecha-
nism of even/odd-mode distortion was discussed and re-
sults were presented showing how it compares to disper-
sion distortion in a simple structure. The pulse distortion
for different strip spacings was shown for a very complex
planar structure, illustrating the use of the recursive Green’s
function formulation as well as the constraint that
even/odd-mode distortion places on choosing strip spac-
ing. The effect of multiple dielectric layers on ¢,, and ¢,,
was discussed and it was shown that certain multilayer
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structures have no even/odd-mode distortion at certain
frequencies. In particular, for a two-layer structure, this
occurs for two different combinations of substrate heights
when the bottom layer has a dielectric constant that is
much lower than that of the top layer. This principle was
applied in designing a coupled microstrip transmission line
that had very low even /odd-mode distortion. It was shown
that this structure had almost completely eliminated
even/odd-mode distortion in the design, despite the very
close spatial proximity of the lines.
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