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Pulse Distortion on Multilayer Coupled
Microstrip Lines

JAMES P. GILB, STUDENT MEMBER, IEEE, AND CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract —The distortion of pulses due to dispmsion and cnupling on
generalized planar microstrip is investigated. A simple, general form for
the Green’s function is obtained by solving the boundary vahre problem

separately for the TE Y and TM Y modes. The mechanism of even/odd-
mnde dktortion is discussed and numerical results are presented illustrat-
ing its effect. The design of structures with low even/odd-mode distortion

is considered. Results for pulse distortion on this type of microstrip are

also included.

I. INTRODUCTION

u LTRAFAST switching speeds and decreasing circuit

dimensions of MMIC’S emphasize the dispersive na-

ture of these printed circuit transmission lines. This in-

crease in dispersive behavior can result in significant dis-

tortion on signals that travel only a short distance in an

MMIC line. Signal distortion and the close proximity of

additional transmission lines necessitate an accurate time-

domain analysis of coupling between these lines. The dis-

tortion of nonperiodic signals on single microstrip lines

has been investigated using approximate formulas for the

line parameters [1]–[4], and experimental results have been

published as well [4], [5]. Similti calculations have also

been performed using approximate formulas to include the

effects of attenuation distortion and a full-wave analysis to

determine the effective dielectric constant [6], [7]. In addi-

tion, distortion effects on coplanar waveguides have been

investigated [8]–[10], since their two-conductor structure

makes the analysis almost the same as the single mi-

crostrip. Distortion of signals on multiple strips has also

been examined using an impedance matrix approach with

the matrix values determined from approximate formulas

[11], [12]. However, a full-wave analysis of pulse distortion

on multiple microstrip lines including the response on

adjacent lines has not been investigated.
This paper uses a frequency-domain approach to ana-

lyze the time-domain response of a nonperiodic input in a

multiconductor, multilayer rnicrostrip structure. First the
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frequency-dependent propagation constants are found for

the structure using a modified spectral-domain technique.

These values are then used with the Fourier transform of

the pulse to determine the frequency-domain output. This

output is inverse Fourier-transformed to give the modal

time-domain waveform. Finally, the modal waveforms are

superimposed, giving the total response at a certain dis-

tance or time on all the conductors.

The propagation constants are found using a variation

of the spectral-domain approach that is simple to formu-

late, computationally efficient, and easy to expand to

examine very general structures. The derivation uses TE ~

(LSE) and TM’ (LSM) modal configurations to expand

the electric and magnetic fields. These configurations make

the derivation much easier because the boundary value

problem can be solved for each mode independently,

streamlining the derivation and reducing the chance for

errors. The resulting Green’s function is purely real for

lossless structures, thus reducing computer storage require-

ments and run times. Finally, the derivation can be applied

to a very general geometry that includes all of the follow-

ing:

a)

b)

c)

d)

an unlimited number of signal conductors confined

to one plane;

an unlimited number of dielectric layers above and

below the interface containing the conductors;

top (cover) and/or bottom (ground plane) conduc-

tor (either present or absent);

conductor sidewalls (either present or absent).

Results are presented showing that differences in the

even- and odd-mode propagation constants can produce

significant degradation of the pulse before it experiences

degradation due to the dispersive nature of the structure.

Graphs showing the effects of strip spacing on the shape of

the signal pulse as well as the response on the sense line

are included. It is also shown that the introduction of a

substrate layer with a much lower dielectric constant and

the proper height can cause the even- and odd-mode

propagation constants to be equal, eliminating interference

between the lines.
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In order to show that a TE or a TM mode can be used
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independently to solve the boundary value problem, it is

h
U1

necessary to demonstrate that the tangential field compo-
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nents satisfy all the boundary conditions over a closed
U2 SLJ2> Pl_12 surface, with no conflicting conditions. This condition is

valid for the TE ~ and TM~ modes, in contrast to the TE2
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The first equation is derived by using the continuity equa-

tion in the transform domain and tlhe second by using the
z magnetic wave equation in the trarlsform domain [13]. In

Fig. L Geometry of generalplanar coupled microstrip structure. addition, the modal currents are rela~ted to the total current

density on the microstrip by

II. DISPERSION RELATIONS
~=~M+qE (4a)

Throughout the paper an eJ”t time convention is used

along with a two-dimensional spatial Fourier transform
< = ~M + ~TE. (4b)

pair defined as Thus, the modal current densities can be expressed in

terms of the total current densities using (3a) and (3b) as

%{g(x, y,z)} =G(/3x,y,/3=)

=Jm/mg(x!Yz)eJ(’xx+B2’)~x~z(1)
—w —w

~-’{wxdoz)}
=g(x, y,z) ‘

Using these current densities, the total fields at the

= *J: J@ G(Bx>y,Bz)e-’(’xx+’’’’ dpxdpz (2)
dielectric interface containing the center conductors can be

m —w written as

where ~~ + ~z2– y;= ~ 2 = u2pc, and /3X, ~=, and aY are

the wavenumbers m the x, z, and y directions. All Fourier

transform quantities are denoted by a ( - ). The geometry

used in the derivation of the Green’s function for an

arbitrary planar microstrip structure is shown in Fig. 1.

The structure is surrounded on four sides by perfect elec-

tric conductors at x = + a, y = O, and y = h~l + h~2

+ -.. + hu2 + kul. If an open structure is to be consid-

ered, then a - m and h ~1 ~ co. For a covered microstrip

without sidewalls, then a a co with h ~1 remaining finite.

The propagation constant ~z( co) can be determined in

many ways. However for coupled microstrips, the spectral-

domain approach is simple to formulate and apply, and it

can be easily extended to many different structures. This

paper uses a variation of the spectral-domain approach to

derive the Green’s function of the rnicrostrip. This varia-

tion is computationally efficient because the Green’s func-

tion is expressed as a real function over the entire range of
integration. In addition, the formulation shows that the

boundary conditions can be enforced on the TEY and TM~

modes independently. This allows the total boundary value

problem to be split into two smaller, similar problems,

greatly reducing the complexity of the derivation.

where ~XX, ~zX, and ~zz are the dyadic Green’s functions

for the particular geometry being considered and are de-

fined as

(7a)

(7b)

and ~m and ~TM are the mod al Green’s impedance
functions for the particular geometry being examined. A

general recurrence relation to determine ~m and ~TM for

any arbitrary planar structure is presented in Section III.

Equations (6a) and (6b) can then be solved for ~z via

Galerkin’s method as in [14].
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III. GREEN’S FUNCTION

While the Green’s function for any arbitrary planar

microstrip geometry can be derived using Maxwell’s equa-

tions and enforcing the boundary conditions at the inter-

faces, the derivation becomes complex and tedious as more

dielectric layers are considered. However there is a definite

form that the Green’s function takes as more planar dielec-

tric layers are added. This form becomes apparent as the

boundary value problem is solved for more than two

dielectric layers above or below the conductor interface.

The impedance elements of the Green’s function, ~TM and

~TE, can be written as a parallel combination of the

admittances seen above and below the conductor inter-

face; i.e,

(8)

where i is either TE or TM; L and U indicate the lower

and upper layers respectively; and N and M are the total

numbers of planar layers below and above the interface, as

in Fig. 1.

The admittances ~f~ can be found using a recursive

formulation for either the upper or the lower layer, begin-

ning with j = L1 or U1 through j = LN or UM, using

(9C)

(9d)

~~) can be thought of as the admittance seen looking

outward from the j th layer (away from the conductor

interface), and ~,~j, is the self-admittance of the layer for

the particular mode configuration.

For j = U1 or Ll, then the (j – l)th layer, UO or LO, is

a perfect electric conductor (i.e., a ground plane or cover

sheet), and ~(~]0 - m, for k = U or L, since a perfect

conductor has zero resistance. Taking the limit of either
(12a) or (12b) as ~f~)O goes to infinity leads to ~(~]1 = ~~~)l.

If the (k)lth layer is dielectric of infinite height (i.e., a

structure with no ground plane or cover sheet), then

h (k)l
+ co and coth(av(k)lh ~k)l) ~ 1. The conditions for

~(~jO and y~~~l are the same as above, as though there were
a conductor at an infinite distance. This is a valid assump-

tion since the outward radiation condition specifies that

E -+ O as y ~ + co. This particular configuration, with no
ground plane and/or cover sheet, results in

~(;fi = ‘,~~)1 = ay(k)l/~,(k)l (lOa)

~~ = ~~1 = 6,(k)l/ay(k)l, k= Uor L. (lOb)

Note that these equations are the same for layers above

and below the conductor interface because Maxwell’s

equations are invariant with respect to choice of coordi-

nates. This is valid only for strips of vanishingly small

thickness and becomes invalid when the strip thickness

approaches the height of the dielectric layer that con-

tains it.

IV. PULSE DISPERSION

The voltage or electric field on the microstrip at any

position z and time tO can be represented as

lCX
U(to,Z) = —/ fi(ti, z = ())eJ[oto-~=(’’’l~@~@

271 -~
(11)

where

P(u,z= O)=JW u(t, z= O)e-Jo’dt (12)
—w

where v ( t, z = O) and F( w, z = O) are a Fourier transform

pair and 8=( a) is the frequency-dependent z-directed
propagation constant. In the case of a finite time-domain

signal, the limits of the second integration are modified to

include only the time that the pulse exists. This integration

can often be done explicitly since many of the signals of

interest have transforms that can be expressed in closed

form.

Since the rnicrostrip is a linear device with respect to

time, the principle of superposition can be applied to the

input signal so that it can be split into two simpler

problems. For symmetric strips, the input signal is split

into even- and odd-mode configurations. For the even

mode, two in-phase signals whose amplitudes are one half

of the original signal are propagated in both strips. This is

equivalent to having a magnetic wall between the two

strips. The odd mode has two signals of one half ampli-

tude, but these signals are 180° out of phase. This is

equivalent to having an electric wall separating the two

strips. The effective dielectric constant for each of these

modes can be easily calculated using the spectral-domain

approach as outlined in Section II.

Having determined the time-dependent response of sym-

metric strips for each of the two modes, even and odd, the

response to a single signal in line 1 and no excitation for

line 2 is

~l(to!z)=;[ue(tojz)+uo(to>z)l (13a)

U’(to, z) =:[oe(to,z)–Uo(to,z)] (13b)

where o,( to, z) and 00( to, z) are the even- and odd-mode

responses of line 1 to the input signal. Also Ul( to, z) and

U2(to, z) are the voltages on lines 1 and 2 at time to and

position z. Using (11), the even- and odd-mode responses
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can be written as

where c,e and c,0 are the frequency-dependent effective

dielectric constants for the even and odd modes, respec-

tively, and c is the speed of light in free space. Substituting

these two equations back into (13a) and (13b) and simpli-

fying we can write

lm
~cos ~: G-6

~l=—.—

J {
277 -~ c 2 1

Since only the real part of the signal is of interest, the

integrations can be written more simply as

V. RESULTS

On lossless coupled microstrip lines, there are two mech-

anisms that degrade the signal: dispersion and coupling.

Dispersion is due to the frequency-dependent behavior of

C,,ff, causing the different frequency components of the

pulse to travel at different speeds. Coupling, on the other

hand, arises from a difference in the even- and odd-mode

~,eff. Both dispersion and coupling reduce the amplitude of

the signal and spread it out in time. In addition, coupling

has another important effect on signal transmission; it

creates responses on adj scent lines.

Coupling distortion can best be understood by consider-

ing the response on both lines to be a linear combination

of four pulses, two on each line, as in Fig. 2(a). In general,

the in-phase pair (even) and the out-of-phase pair (odd)

will travel down the line at two different speeds, due to

differences in the C,.ff of the even and odd modes. The

even- and odd-mode pairs of pulses add constructively on

the signal line, and destructively on the sense line. To

even odd
mode mode

-nn+i -

~.--.,

Signal line --

Sense line n+—
——

~~
L.-.-J

(a)

Signal line ~j -– ~

Sense line

*-–+

(b)

Signal line
~--j -– ~

Sense line

*-’+

(c)

Signal line ~-—~

Sense llne

+-–+
L._.-.J -

(d)

Fig. 2. Even/odd-mode disortion on a nondispersive, lossless transmis-
sion line. (a) Split into even and odd modes. (b) Distortion after a short
distance. (c) Increasing distortion with dlistance. (d) Even and odd
separate completely.

isolate the effects of even/odd-mode distortion, a hypo-

thetical lossless and dispersionless two-conductor trans-

mission line is considered. A rectangular pulse is used for

simplicity, and it is assumed that the odd-mode ~reff is

higher than the even mode. When the signal first starts out,

the even and odd pairs have not separated very much, and

almost completely cancel each other on the sense line and

reproduce the signal fairly accurately on the signal line, as

shown in Fig. 2(b). As the signal travels farther (Fig. 2(c)),

the even and odd pairs begin to separate. Now they do not

cancel completely on the sense line or reproduce the signal

very well on the signal line, the result being distortion and

cross talk. After the signal travels a very great distance

(Fig. 2(d)) the even- and odd-mode pairs separate com-

pletely. In Fig. 2(b)–(d), the leading response on the sense

line is positive, because it was assumed that the even-mode

t ,eff was less than the odd mode; if this is not the case,

then the leading response is negative. In addition, as the

distance increases, the amplitude of the response on both

lines will tend to approach one half the value of the

response on a single, isolated line. The total pulse spread,
in time, due to even/odd distortion, at a distance Z., can

be written as

(17)

where c,, and c,0 are the C,.ff for the even and the odd
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Fig. 3. Effective dielectric constants of a coupled microstrip and a
single isolated microstrip (w = h = 1.5 mm, s = 3.0 mm, c,= 9.7).

mode, respectively. If the transmission line is dispersive,

then the even\odd distortion mechanism is the same,

except that the even- and odd-mode pairs suffer dispersion

as they travel down the line, adding additional pulse

spread and further reducing the amplitude of the signal.

To illustrate these two mechanisms, Gaussian pulses are

used, whose time and frequency responses are defined as

(18)

Here A is the amplitude of the pulse, r is the half

maximum, half width time, and the pulse is centered about

t = O. For the computation of C,,ff, a 2 by 2 matrix is used

(M= N=l) with the ~ from [14] and ~ from [15].

Results obtained with this method have been compared

and agree very closely with results presented in the litera-

ture [14], [16].

Fig. 3 shows C,,ff as a function of frequency for a

single-layer symmetric coupled microstrip, whose dimen-

sions are given in the figure. The change in Crcff versus

frequency is responsible for dispersion distortion while the

differences in c,, and C,Oat a given frequency are responsi-

ble for coupling distortion. At higher frequencies, ~,, and

6 approach the same limiting value, c,; hence coupling

d~stortion is less significant at these frequencies. The lines
have greater isolation at the higher frequencies because the

electrical distance between the lines becomes greater as the

frequency increases. The largest differences between ~r,

and c,0 appear at low frequencies for this structure. Thus

while a low-frequency-content pulse (i.e., long time dura-

tion and/or long rise times) would experience little disper-

sion distortion, due to the relatively constant c~~ff at low

frequencies, it would still be very susceptible to coupling

dispersion, due to the large difference in c,, and C,Oat the

lower frequencies.

In order to illustrate the effects of dispersion and cou-

pling distortion in the structure detailed in Fig. 3, a

2.5

1

— Signal Line
5.0

1

-----------------Sense Line
Undistorted

--------- Single Line

0.0

~ Time in nanoseconds
–2.5

(a)

I
w s w

I
h &

r

1 Time in nanoseconds
–2.5

(b)

Fig, 4. Gaussian pulse distortion on a coupled microstrip and single
isolated microstrip for (a) I = 40 mm and (b) I = 80 mm (T = 50 ps,
,4=5, w=h=l.5 mm, s=3,0 mm, (,=9,7),

Gaussian pulse (A= 5, ~ =50 ps) is assumed to enter the

signal line, with no signal on the sense line. The response

on both lines is plotted as a function of time in Figs. 4 and

5 at four different distances. For comparison, the response

on a single isolated line on the same structure and an

undistorted pulse are included. The undistorted pulse is

computed using a constant e,cff equal to its zero-frequency

value for the single line. The difference between the pulses

in the single and in the undistorted lines shows the effect

of dispersion. The difference between the pulses in the

single and the signal lines illustrates how coupling affects

the transmitted pulse. In addition, the amount of cross talk

is represented by the response on the sense line.

After the signal has traveled only a short distance, the

even/odd-mode distortion begins to significantly affect

the pulse. At 80 mm dispersion has reduced the pulse

amplitude by only 4 percent, while even/odd distortion

accounts for an extra 14 percent reduction. The response
on the sense line has risen to almost 40 percent of the

undistorted pulse height. By 160 mm, dispersion accounts

for a 12 percent reduction while even/odd distortion ac-

counts for an extra 30 percent, reducing the signal ampli-

tude to almost half the original value. The response on the

sense line has risen to 56 percent, achieving almost the

same amplitude as the signal line response. At this dis-

tance, distortion due to dispersion is still not a major

factor, while even/odd-mode distortion has critically de-

graded the pulse and induced a false signal on the sense
line. Thus even/odd-mode distortion is the dominant

mechanism for this structure.



GILB AND BALANIS: PULSE DISTORTION ON COUPLED MICROSTIUP LINES

——————Sirznal Line

Time in nanoseconds

(a)

— Signal Line
--------------- Sense Line

Undistorted
;,:..,--...--—. Single Line

M 1
........

$ –2.5 Time in nanoseconds

(b)

Fig. 5. Gaussian pulse distortion on a coupled microstrip and single
isolated microstrip for (a) I =120 mm and (b) 1=160 mm (7 = 50 ps,
,4=5, w=!t=l.5 mm, s=3.0 mm, (,=9.7).

The strip spacing, s, is an important parameter in cou-

pled microstrip design. In order to reduce the effects of

even/odd-mode distortion, the strip spacing is increased;

however, to reduce circuit dimensions, the spacing should

be as small as possible. It is important then to be able to

choose an appropriate spacing which is as small as possible

and yet does not have an unacceptable amount of

even/odd-mode distortion. There are three main consider-

ations in assessing the effect of even/odd-mode distortion

on pulse dispersion:

a) the reduction of amplitude in the signal line pulse;

b) the amplitude of the unwanted response in the sense

line;

c) the amount of pulse spread in time.

The acceptable values of these parameters are determined

by the specific circuit in question and are dependent on

the type of pulse and the line length, as well as the physical

parameters of the structure.

A complex structure is used to illustrate both the use of

the recursive Green’s function formulation and the effect

of strip spacing on pulse distortion. The structure is an

open microstrip with three dielectric layers below the

center conductor, one cover layer, and open air above it,

with dimensions and parameters as given in Fig. 6. The

signal line response, plotted in Fig. 6(a), shows that at a

1625

On

4 J Time in nanoseconds
–2.5

(a)

h UT

i

~rul

huz Signal sense =,U2

h L3
t’j#yt+ .,L5

w

+

h L2 e rL2

‘L1 C,L1

50 S=l.5

;
-----------------s= 2.5

S=3.5

s –2.5 J Time in nanoseconds

(b)

Fig. 6. Distortion of a Gaussian pulse on a multilayer coupled mi-
crostrip for different spacings (1= 100 mm, r = 50 ps, A = 5, w = 1.5
mm !-rUl= co, huz =0,15 mm, h~j =0.2 mm, hzz =1.3 mm, h~l= 0.5
mm, Crul =1.0, C,U2= 3.5, C,L3= 5.5, C,L2=12.2, C,LI = 9.7). (a) Signal
line response. (b) Sense line response.

spacing of about 5 mm, the effects of even/odd-mode

distortion become secondary to dispersion distortion. In

Fig. 6(b), the response on the sense line is detailed. Note

that the positive peak of the response reaches a maximum

amplitude at ,s= 2.5 mm, reducing slightly for s =1.5 mm.

This is because the. amplitudes of the positive and negative

peaks tend to approach a value that, is one half the single

line response as the even and odd modes begin to separate,

as shown in Fig 2.

In this structure, t,0 is less than E,C and so’ the leading

response on the sense line is negative. For single-layer,

open microstrip structures (Fig. 1, V = 1 and M = 1), the

odd mode always has a lower [., ~f. For multiple-layer

structures, however, it is possible for the even mode to

have a lower C,eff. An example of this kind of structure is

an open rnicrostrip with two dielectric layers below the

center conductor interface (Fig. 1, N = 2 and M = 1),

where c,~1 is sufficiently less than c,~z. Fig. 7(a) shows

how the Cpeand C,O,as well as the c,,,ff of a single isolated

microstrip, vary as a function of the heights of the two

substrates for a given total substrate height, operating

frequency, and parameters as shown in Fig. 7. When the

height ratio, hl/rf ~Ot,l,is equal to either O or 1 (only cr~z or
c,~1 below), ~,0 is lower than Cpe,which is expected since

these configurations are simply a single-layer microstrip.

However, when the height ratio is between about 0.3 and

0.85, 6,. is lower than .s,.. At two different height ratios C,C

is equal to t,.; therefore there is no even/odd-mode distor-

tion at this frequency for those two configurations.
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Fig. 7. Even/odd-mode behavior for two-layer open microstrip (ktotd
—— W=IS mm, s=3.o mm, C,L2 =9.7, E,LI =2.2). (a) Effective dielec-
tric constants versus height ratio of dielectric substrates, ~=10 GHz.
(b) Location of zero even/odd-mode distortion points versus fre-
quency.

These zero dispersion points can be used to specify

structural parameters where the lines are completely un-

coupled, despite their close spatial proximity. The loca-

tions of the zero dispersion points, or roots, are plotted as

a function of frequency in Fig. 7(b) for the structure

shown. The total substrate height and dielectric constant

of the top layer are the same as the structure used for Figs.

3-5. At frequencies higher than those shown in Fig. 7(b),

the roots are not included because ~,e and Ero are approxi-

mately the same for all height ratios, making all of them

zero dispersion points.

Since the structure in Figs. 3–5 is limited by its

even/odd-mode distortion, it is advantageous to see if it is

possible to remove this distortion by adding a second

dielectric layer of appropriate height below. The original

total substrate height is retained, as well as the upper

substrate (c ,L2 = 9.7); however a lower substrate with t ,Ll

= 2.2 is introduced. Since the Gaussian pulse used in the

first case is of such short duration, its frequency spectrum

contains significant components at frequencies where the

zero distortion roots are varying widely. Thus it is not

possible to obtain a configuration where there is no

even/odd distortion for all the frequencies of interest.

However, since the spectrum of the pulse falls off quadrat-

ically and since c ~e and c,0 approach the same values at

80

~~

— Single line
------------- Even mode

Odd mode

70

.,”
z ,,
~ 6.0 ,,,’

Q ,,”
..”

.,”,,, ~,,,
,.-

50 h

[

L2
E

,2

h
L1

E
,1

‘o-~
0 10 20 30 40 50 60

Frequency in GHz

Fig. 8. Effective dielectric constants for coupled and single isolated
microstrips on a low-distortion structure ( w = 1.5 mm, s = 3.0 mm,
h~z = 0.97 mm, h~l = 0.53 mm, Crz= 9.7, (,1= 2.2).
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‘ --------------- Sense Line
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Fig. 9. Gaussian pulse distortion on a coupled mlcrostrip for (a) I =
40mm and (b) l=80mm(7=50ps, ,4=5, w=l.5 mm, s=3.0 mm,
h=z = 0.97 mm, h~l = 0.53 mm, 6,2 = 9.7, <,1= 2.2).

higher frequencies, it is more important to match the zero

dispersion points for the lower part of the frequency

spectrum. Thus a height ratio of 0.35 is chosen and the

frequency characteristics of the three effective dielectric

constants are plotted in Fig. 8.

While ~,~ and C,O are not exactly equal for all frequen-

cies, at lower frequencies ( <20 GHz) they differ by less

than 0.9 percent. In addition, at two frequencies, 1.5 GHz

and 11 GHz, c,, and C,O are equal. Note that the largest

difference between c,= and CrOfor this structure does not

occur ‘at zero frequency, but instead happens at 23 GHz,
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Fig. 10. Gaussian pulse distortion on a coupled microstrip for (a)
l=120mm and(b) l=160mm(T=50ps, ,4=5, w=l.5 mm, s=3.O
mm, h~2 = 0.97 mm, k~l = 0.53 mm, C,z= 9.7, crl = 2.2).

where they differ by 1.4 percent. At very high frequencies,

the two C,efr, are almost equal, with less than a tenth of a

percent difference.

Using these data for e,, and ●,0, the pulse responses for

this structure, at the same distances used in Figs. 4 and 5,

are shown in Figs. 9 and 10. The response for the single

line is not shown, because there was no visible difference

between it and the signal line response. In fact, at 1 =

160 mm, the single and signal line pulses agree to better

than 1 percent, showing that even/odd distortion has been

almost completely eliminated. In addition, the response on

the sense line has been reduced from 56 percent of the

undistorted pulse in Fig. 5(b) to 3.2 percent in Fig. 10(b).

An added benefit is that dispersion distortion has also

been reduced. This is because lower dielectric constants

produce less dispersion for the same substrate height.

VI. CONCLUSIONS

This paper used a variation of the spectral-domain tech-

nique to derive a recursive formulation of the Green’s

function that can handle any planar geometry, The mecha-

nism of even/odd-mode distortion was discussed and re-

sults were presented showing how it compares to disper-

sion distortion in a simple structure. The pulse distortion
for different strip spacings was shown for a very complex

planar structure, illustrating the use of the recursive Green’s

function formulation as well as the constraint that

even/odd-mode distortion places on choosing strip spac-

ing. The effect of multiple dielectric layers on C,e and c,0

was discussed and it was shown that certain multilayer
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structures have no even/odd-mode distortion at certain

frequencies. In particular, for a two-layer structure, this

occurs for two different combinations of substrate heights

when the bottom layer has a dielectric constant that is

much lower than that of the top l?yer. This principle was

applied in designing a coupled microstrip transmission line

that had very low even/odd-mode distortion. It was shown

that this structure had almost completely eliminated

even/odd-mode distortion in the design, despite the very

close spatial proximity of the lines.
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